Block This Way: Securing Identities using Blockchain

James Argue, Stephen Curran

•

BC Ministry of Citizens' Services February 7, 2018

The Identity on the Internet Challenge

The Internet was built without a way to know who and what you are connecting to.¹

"On the Internet, nobody knows you're a dog."

¹ Kim Cameron – Architect of Identity, Microsoft Corporation https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf

The Evolving Addition of Identity to the Internet

- Fundamentals: Modern Cryptography
 - Data encryption for safe storage and transfer
 - Key management traditional approaches
- Self-Sovereign Identity Verifiable Digital Identity
 - Requirements
 - Enabling Technologies Decentralized IDs, Blockchain and Verifiable Claims
 - Building the concept of "Web of Trust"
- Along the Way: Performances and Demonstrations
 - Cryptography basics , Blockchain and Verifiable Claims

Your Guides

- James D. Argue, Ministry of Citizen Services, BC Government
 - o Team Lead, Network Security Architect, Information Security Branch
 - CISSP, MCSE
- Stephen Curran, Cloud Compass Computing, Inc.
 - The Verifiable Organizations Network (VON) Project
 - Ministry of Technology, Innovation and Citizens' Services, BC Government
- Maher Bouidani, University of Victoria (Co-Op)
 - The Verifiable Organizations Network (VON) Project
 - Ministry of Technology, Innovation and Citizens' Services, BC Government

Over to James...

Block This Way: Securing Identities using Blockchain

Decentralized Identity, Blockchains and Verifiable Claims

Verifiable Organizations Network (VON)

MTICS - Government of BC

February 7, 2018

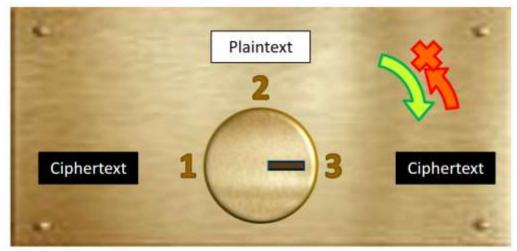
The Evolving Addition of Identity to the Internet

- Fundamentals: Modern Cryptography
 - Data encryption for safe storage and transfer
 - Key management traditional approaches
- Self-Sovereign Identity Verifiable Digital Identity
 - Requirements
 - Enabling Technologies Decentralized IDs, Blockchain and Verifiable Claims
 - Building the "Web of Trust"
- Along the Way: Performances and Demonstrations
 - o Cryptography basics, Blockchain and Verifiable Claims

Self-Sovereign Digital Identity

Lifetime portable identity for any person, organization, or thing that does not depend on any centralized authority and can never be taken away

Current Identity Handles


- Name Stephen Curran (not unique)
- Phone Number 250-857-1096 (changes, central auth, can be taken away)
- Email Address <u>swcurran@cloudcompass.ca</u> (changes, central authority)
- URL <u>www.linkedin.com/in/stephen-curran-4146321</u> (same issues)
- SIN/SSN/DL Unique, central authority
- Biometrics Unique, but if compromised...

From Centralized to Decentralized

- CAs are out as the suppliers of authority
- Elements:
 - Asymmetric keys (crypto) for all identity owners including citizens
 - Decentralized IDs DIDs are the promised SSI Identifiers
 - Blockchain the Distributed Key Management System (DKMS) platform
 - DIDs are registered and found on a Blockchain
 - Non-Correlation is paramount
 - Verifiable Claims
 - Trust built on evidence

Asymmetric Crypto - Keys

- What James talked about...
- Public and Private Keys
- Proof of Digital Identity = Proof of Control of Private Key
 - o Can read and respond to messages encrypted with Public Key

Decentralized Identifiers (DIDs)

DID Syntax (W3C)

```
did:sov:3k9dg356wdcj5gf2k9bw8kfg7a

Method-Specific Identifier

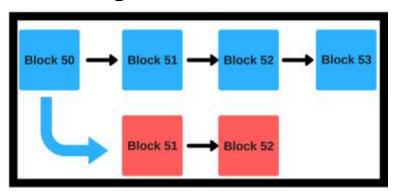
Method
Scheme
```

DIDs and DID Documents

Identifier

{ "Key": "Value" }

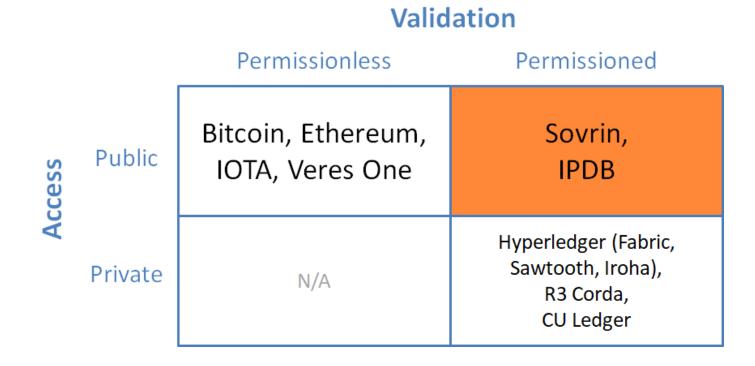
DID Document


JSON-LD document describing the entity identified by the DID

Lookup a DID to find a (JSON) DID Document

```
"@context": "https://w3id.org/did/v1",
                                                                                  containing:
               "id": "did:example:123456789abcdefghi",
               "publicKey": [{
                 "id": "did:example:123456789abcdefghi#keys-1",
 1. DID
                 "type": "RsaSigningKey2018",
 2. Set (
                 "owner": "did:example:123456789abcdefght",
                 "publicKeyPem": "----BEGIN PUBLIC KEY...END PUBLIC KEY----\r\n"
       a.
               }],
 3. Set (
               "authentication": [{
                 // this key can be used to authenticate as DID ...9938
                 "type": "RsaSignatureAuthentication2018",
                 "publicKey": "did:example:123456789abcdefghi#keys-1"
               }],
               "service": [{
Published
                 "type": "ExampleService",
                 "serviceEndpoint": "https://example.com/endpoint/8377464"
               }]
```

Blockchain - in 60 seconds (120? More?)


- A write-once (immutable) database a shared ledger
- Implemented across many nodes on a peer-to-peer network
- Write process:
 - Pending writes (transactions) are broadcast to all write nodes
 - Hashing applied to build chained immutable blocks broadcast back to network
 - Demo of mining: https://anders.com/blockchain/hash.html
- Consensus algorithm to agree on the "next block" to create a single chain

Blockchain - in 60 seconds (120?) (more??)

- "Chaining" makes it really, really hard to change historical records
 - o and really easy to detect when someone is trying to do so
- Public/Private Key used to prove:
 - Identity prove control
 - Access rights prove you have the resource

Blockchain Governance Models

Blockchain and DIDs

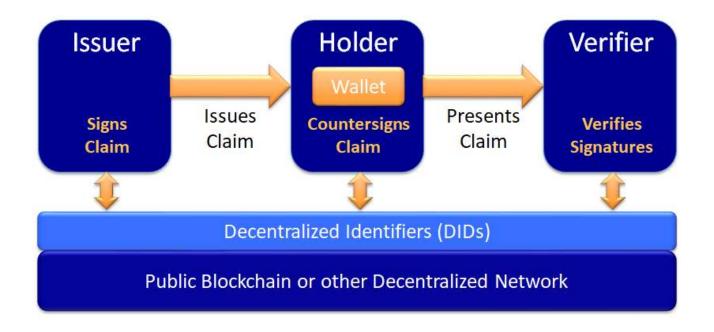
- Public DIDs and DID Documents go on the Blockchain
 - We'll get to private ones
- Result: Distributed Key Management System with no central authority
 - If I have your DID, I can:
 - Find out your public keys (that's a good thing!)
 - Only you will understand my message (you have the private key)
 - Find out endpoints I can use to contact you
 - Warning: Many details glossed over...

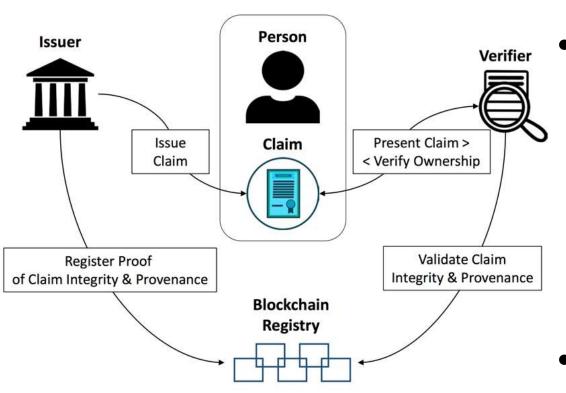
- General rule on any public Blockchain NO PRIVATE DATA
 - Even if it is encrypted!

DIDs and Non-Correlation

- Prevent monitoring public activity to learn about identities
 - Data at rest e.g. DIDs on the Blockchain, DIDs in databases
 - Email, SSN, Phone Number, etc.
 - Data in motion e.g. connections between websites
- Solution pair-wise DIDs
 - Each identity owner doesn't have just one DID
 - They have one *per* relationship
 - Bank, Government Service 1, Gov't Service 2, Email Server, Father, etc.
 - Pair-wise DIDs are private between the participants
 - No way to understand them
 - No way to correlate activities between them
 - Private DIDs need not go on the Blockchain just shared between the participants
 - Protocol to establish connection between identities

REVIEW: From Centralized to Decentralized


- CAs are out as the suppliers of authority
- Elements:
 - Asymmetric keys (crypto) for all identity owners including citizens
 - Decentralized IDs DIDs are the promised SSI Identifiers
 - ✓ Blockchain the Distributed Key Management System (DKMS) platform
 - ✓ DIDs are registered and found on a Blockchain
 - Non-Correlation is paramount


Private, asymmetric key encrypted, pairwise communication channels. What can we do now?

- Verifiable Claims
- Trust built on evidence

Verifiable Claims - W3C Standard

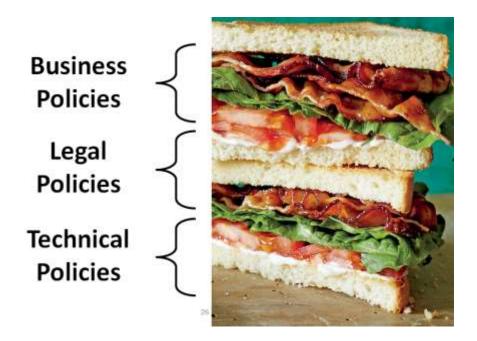
Cryptographically signed data exchanged between identities

- Cryptographically signed:
 - Disclosed with consent of Person
 - Issued by the Issuer (via DID)
 - Held by the Prover
 - Name: John Smith
 - Has Bank Account: True
 - Client For > 3 Years: Yes
 - Not tampered with
 - Not revoked

- Exercise for Verifier
 - Do I trust the issuer?

Features of Verifiable Claims

- Deep, deep crypto
 - Not just encrypt/decrypt but use of signing and beyond for proof of issuer, holder
- Selective Disclosure
 - Select information only some fields from claim eg. at Pub


Features of Verifiable Claims

- Verification is between *Holder* and *Verifier*
 - No information goes to the Issuer
 - Information on the blockchain is accessed:
 - Schema Information structure of the data
 - Claim Issuer Data links Schema, Issuer, Revocation Registry

Exercise for the Verifier – do they *TRUST* the Issuer?

Trust Framework

A set of business, legal, and technical rules which members of a community agree to follow in order to achieve trust online

Trust Framework Examples

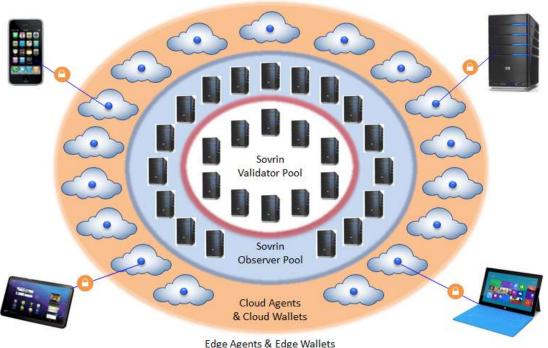
- DIACC Pan-Canadian Trust Framework
 - https://diacc.ca/2016/08/11/pctf-overview/
- Sovrin Trust Framework
 - International Non-Profit http://www.sovrin.org
 - Board of Trustees 12 Members Governs Trust Framework
 - Controls selection of Stewards permissioned blockchain operators
 - Technical Governance Board
 - Governs Open Source foundation code
 - Linux Foundation's HyperLedger Indy project
 - Sets technical policies implemented in software

There are others building decentralized identity frameworks and systems

From Centralized to Decentralized

- CAs are out as the suppliers of authority
- Elements:
 - Asymmetric keys (crypto) for all identity owners including citizens
 - Decentralized IDs DIDs are the promised SSI Identifiers.
 - ✓ Blockchain the Distributed Key Management System (DKMS) platform
 - ✓ DIDs are registered and found on a Blockchain
 - V Non-Correlation is paramount

Private, asymmetric key encrypted, pairwise communication channels.


- Verifiable Claims
- Trust built on evidence

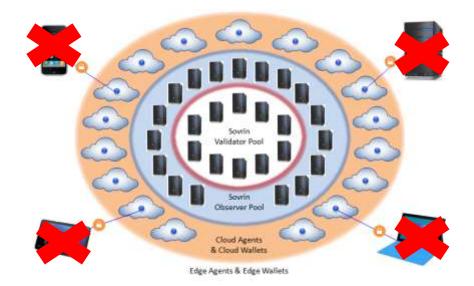
Exchange trusted, signed, verifiable data

Privacy By Design

- DIDs and Keys proof of identity controlled by Identity Owner
 - Not by central stores Google, Facebook
 - Nirvana: No passwords just a connection based on DIDs
 - Adding the currently missing Identity Layer to the Internet
- Verifiable Claims held by Identity Owner
 - Data may not need to be held by issuer risk mitigation
 - Retrieve data from Owner only as needed as Verifiable Claim
 - E.g. Name, Address, Credit Card number
 - The only data held a bunch of uncorrelateable DIDs no value to hackers
 - Data disclosure controlled by Identity Owner
 - Consent
 - Selective disclosure
 - Nirvana: Unverifiable data is useless must include proof of issuer/holder

Sample Self-Sovereign Network Architecture

SSI In Action - BC Government's VON Project



VON

Verifiable Organizations Network

Chicken and Egg Problem

- Citizens don't have wallets so can't interact with SSI-enabled Services
- Services aren't SSI-enabled because citizens don't have wallets

VON Project - BC Government Experiment

TheOrgBook¹ is to bootstrap Verifiable Claims for Organizations using Public Data

- Government services that print permits extended to "print" verifiable claims
- Public Verifiable Claims sent to TheOrgBook a central claims repository
- Other services can use Verifiable Claims from TheOrgBook
 - Clean data
 - No repeated typing
 - Very lightweight integration no MOU
- A discovery service for Organizations

¹ TheOrgBook is to SSI as TheFaceBook was to Social Networks

- ✓ Identity-Enabled Services one-side of the market
 - √ Services receiving, creating Verified Claims
- ✓ Patterns (and code!) to SSI-enable more Services

Demo - TheOrgBook

https://devex-von-test.pathfinder.gov.bc.ca/home

Workshop- What's on the Ledger?

- Use Case: Permitify Getting a Restaurant Permit in Surrey
- Traditional
 - Contact multi-levels of government in order
 - Enter same information over and over
 - Bring necessary paperwork to prove steps completed
- With TheOrgBook
 - Services are SSI-enabled and can use TheOrgBook
 - Future: Can use Organization's Wallet or TheOrgBook
 - Recipes of steps to meet business goal: Open A Restaurant
 - Retrieve claims from TheOrgBook based on foundational ID BC Registries Incorporation
 - Reduce re-typing, need for in-person proofs

Workshop – What's on the Ledger?

- We'll go Step by Step through process
 - Initialize the Blockchain
 - Initialize the services
 - Generate claims
 - Request proofs deliver proofs based on claims
- Throughout Showing:
 - What goes on the Blockchain?
- Want to play along?

http://138.197.170.136

Recap - Looking Forward

- Foundational Technology Asymmetric Keys Public/Private
- Centralized and Decentralized Key Management Systems
- Self-Sovereign Identity
 - o DIDs, DID Documents and Blockchains
 - Verifiable Claims
- Privacy by Design
 - Data controlled by Identity Owner
 - Used for login
 - Used for proofing "things" to verifiers
- Trust Frameworks
 - You can trust the mechanics (e.g. issuer, holder, tampering, revoked)
 - Can you trust the participants of the network?

Interested in Learning More?

https://von.pathfinder.gov.bc.ca/

swcurran@cloudcompass.ca